0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Содержание

Как подключить импульсный трансформатор

Схема энергосберегающей лампы на 220 В – самодельная светодиодная и люминесцентная

Выход из строя батареи аккумуляторного шуруповерта или другого электроинструмента – событие не самое приятное, особенно если учесть, что стоимость замены этого элемента соизмерима с ценой нового прибора. Но быть может, незапланированных расходов удастся избежать? Это вполне возможно, если заменить аккумулятор простеньким самодельным энергосберегающим блоком питания импульсного типа, с помощью которого инструмент можно будет заряжать от сети. А комплектующие для него можно найти в доступном и повсеместно распространенном изделии – это люминесцентные лампы.

Источник балласта энергосберегающей лампочки

Согласно характеристикам энергосберегающих ламп, в цоколе каждой из них предусмотрен так называемый электронный балласт – миниатюрная схема, предотвращающая мигание лампы во время включения и обеспечивающая постепенный разогрев катодных спиралей. Благодаря ей находящийся в колбе газ испускает свечение с частотой от 30 до 100 кГц.

Работа на столь высоких частотах значительно увеличивает коэффициент энергопотребления, доводя его практически до единицы, чем и обусловлена высокая экономичность ламп дневного света данного типа. Дополнительными преимуществами высокочастотного электричества является отсутствие воспринимаемого человеческим ухом шума и электромагнитного поля.

В зависимости от того, как спроектирован электронный дроссель для люминесцентных ламп, она может сразу загораться с полным накалом, либо выходить на максимальную яркость постепенно. Иногда для этого требуется одна или две минуты, что, конечно, не очень удобно. Время разогрева лампы производителями не указывается, и покупатель имеет возможность проверить его, только начав пользоваться изделием.

Подавляющая часть балластных схем, по сути, являющихся преобразователями напряжения, собирается на полупроводниковых транзисторах. В дорогих лампах применена более сложная схема, в дешевых – упрощенная.

Вот чем можно поживиться, имея на руках годную или перегоревшую люминесцентную лампу:

  • биполярные транзисторы, рассчитанные на напряжение до 700 В и токи до 4 А, часто уже с защитными диодами (D4126L или аналогичные);
  • полевые транзисторы (встречаются довольно редко);
  • импульсный трансформатор;
  • дроссель;
  • двунаправленный динистор, аналогичный сдвоенному динистору КН102;
  • конденсатор на 10/50В.

Некоторые виды электронного балласта энергосберегающих ламп при сборке самодельного блока питания выступают не просто источником комплектующих, но представляют собой значительную часть схемы, которую остается только немного дополнить и изменить.

Не очень удачными считаются преобразователи, имеющие в своем составе электролитические конденсаторы. Именно эти элементы особенно часто становятся причиной поломок в электронных устройствах.

Неподходящим окажется балласт, в схему которого включена специализированная микросхема.

Импульсный блок питания и его особенности

В импульсный блок питания (ИБП) преобразование электрической энергии происходит по следующей схеме:

  1. Выпрямитель входной (диодный мост + конденсатор) преобразует входной ток из переменного в постоянный.
  2. Инвертор преобразует поступающий с входного выпрямителя постоянный ток снова в переменный, но уже с частотой выше 10 кГц, то есть исходная частота тока (50 Гц) повышается более, чем в 200 раз.
  3. Переменный высокочастотный ток поступает на импульсный трансформатор, который понижает или повышает напряжение.
  4. Выходной выпрямитель превращает переменный ток с требуемыми параметрами, но высокой частотой, в постоянный.

Главная особенность этого способа преобразования электроэнергии состоит в существенном увеличении частоты переменного тока, поступающего на трансформатор. Переделка энергосберегайки позволяет сделать его значительно компактным, чем он был бы при частоте в 50 Гц. Но малые размеры – это не единственное преимущество импульсных блоков перед линейными.

ИБП, выполненные с применением современных технологий, практически не имеют энергопотерь, в то время как линейные блоки рассеивают определенную долю энергии на дырочно-электронном переходе транзистора.

Работа инвертора, преобразующего постоянный ток высокочастотный переменный, основана на применении MOSFET-транзисторов, для которых характерна высокая скорость переключения. Быстродействующими должны быть и диоды, устанавливаемые в мосту выходного выпрямителя.

Обычные диоды с током, имеющим частоту выше 10 кГц, работать не смогут. Широко используются диоды Шоттки, которые, в отличие от кремниевых диодов, теряют очень малую долю энергии, работая на высокой частоте.

При низком выходном напряжении роль выпрямителя может играть транзистор. Еще вариант – замена трансформатора дросселем. Подобные схемы встречаются в самых простых преобразователях.

Рекомендуем Вам также более подробно ознакомиться со схемой диммера.

ИБП из люминесцентной лампы своими руками

В большинстве случаев для сборки ИБП электронный дроссель эпра следует лишь немного изменить (при двухтранзисторной схеме) за счет перемычки, а затем подключить к импульсному трансформатору и выпрямителю. Некоторые компоненты просто удаляются за ненадобностью.

Для слабых блоков питания (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Достаточно будет добавить несколько витков провода на магнитопровод имеющегося в балласте лампы дросселя, если, конечно, там есть для этого место. Новую намотку можно сделать прямо поверх существующей.

Для этого отлично подойдет провод марки МГТФ с изоляцией из фторопласта. Обычно провода требуется мало, при этом почти весь просвет магнитопровода занимает изоляция, что и обуславливает малую мощность таких устройств. Чтобы увеличить ее, понадобится импульсный трансформатор.

Импульсный трансформатор

Особенностью описываемого варианта ИБП является способность до некоторой степени подстраиваться под параметры трансформатора, а также отсутствие цепи обратной связи, проходящей через этот элемент. Такая схема подключения позволяет обойтись без особо точного расчета трансформатора.

Как показала практика, даже при грубых ошибках (допускались отклонения свыше 140%) ИБП можно дать вторую жизнь и он получался работоспособным.

Трансформатор изготавливается на базе все того же дросселя, на котором наматывается вторичная обмотка из лакированного обмоточного медного провода. При этом важно уделить особенное внимание межобмоточной изоляции из бумажной прокладки, ведь «родная» обмотка дросселя будет работать под сетевым напряжением.

Даже если она покрыта синтетической защитной пленкой, поверх нее все-равно необходимо намотать несколько слоев электрокартона или хотя бы обычной бумаги общей толщиной 100 мкм (0,1 мм), а уже поверх бумаги можно укладывать лакированный провод новой обмотки.

Диаметр провода должен быть наибольшим из возможных. Витков во вторичной обмотке будет не много, поэтому их оптимальное количество можно будет подобрать опытным путем.

Используя указанные материалы и технологию можно получить блок питания мощность 20 или чуть более ватт. В данном случае ее значение ограничивается площадью окна магнитопровода и, соответственно, максимальным диаметром провода, который удается там разместить.

Выпрямитель

Во избежание насыщения магнитопровода в ИБП применяют только двухполупериодные выходные выпрямители. В том случае, если импульсный трансформатор работает на понижение напряжения, наиболее экономичной является схема с нулевой точкой, но для ее реализации понадобится сделать две полностью симметричные вторичные обмотки. При ручной намотке можно выполнить обмотку в два провода.

Стандартный выпрямитель, собранный по схеме «диодный мост» из обычных кремниевых диодов, для импульсного ИБП не подходит, поскольку из 100 Вт передаваемой мощности (при напряжении 5 В) на нем будет теряться около 32 Вт или более. Собирать же выпрямитель на мощных импульсных диодах будет слишком дорого.

Наладка ИБП

После сборки ИБП его необходимо подключить к максимальной нагрузке и проверить, насколько сильно греются транзисторы и трансформатор. Предел для трансформатора – 60 – 65 градусов, для транзисторов – 40 градусов. При перегреве трансформатора увеличивают сечение провода или габаритную мощность магнитопровода, либо выполняют оба действия совместно. Если трансформатор сделан из дросселя балласта лампы, увеличить сечение провода, скорее всего, уже не получится и придется ограничивать подключаемую нагрузку.

Читать еще:  Как подключиться к принтеру через wifi canon

Как сделать светодиодный БП с повышенной мощностью

Иногда стандартной мощности электронного балласта лампы бывает недостаточно. Представим себе ситуацию: имеется лампа мощностью 23 Вт, а необходимо получить источник питания для зарядного устройства с параметрами 12В/8А.

Для того чтобы осуществить задуманное, придется раздобыть компьютерный блок питания, оказавшийся по каким-либо причинам невостребованным. Из этого блока следует изъять силовой трансформатор вместе с цепочкой R4C8, которая выполняет функцию защиты силовых транзисторов от перенапряжения. Силовой трансформатор следует присоединить к электронному балласту вместо дросселя.

Опытным путем было установлено, что данный тип ИБП позволяет снимать мощность до 45 Вт при незначительном перегреве транзисторов (до 50 градусов).

Чтобы избежать перегрева, в базах транзисторов необходимо установить трансформатор с увеличенным сечением сердечника, а сами транзисторы установить на радиатор.

Возможные ошибки

Как уже говорилось, включение в схему в качестве выходного выпрямителя обычного низкочастотного диодного моста нецелесообразно, а при повышенной мощности ИБП делать этого тем более не стоит.

Также бессмысленно пытаться ради упрощения схемы наматывать базовые обмотки непосредственно на силовом трансформаторе. В отсутствие нагрузки будут иметь место значительные потери из-за того, что в базы транзисторов будет поступать ток максимальной величины.

Применяемый трансформатор с увеличением тока нагрузки увеличивает и ток в базах транзисторов. Практика показывает, что при достижении мощностью нагрузки значений в 75 Вт в магнитопроводе трансформатора имеет место насыщение. Это приводит к ухудшению характеристик транзисторов и их перегреву.

Во избежание этого можно самому намотать трансформатор тока, в два раза увеличив сечение сердечника или сложив вместе два кольца. Также можно в два раза увеличить диаметр провода.

Существует способ избавиться от базового трансформатора, выполняющего промежуточную функцию. Для этого токовый трансформатор через мощный резистор подключают к отдельной обмотке силового обогревателя, реализуя схему обратной связи по напряжению. Недостатком данного варианта является то, что токовый трансформатор при этом постоянно работает в режиме насыщения.

Нельзя подключать трансформатор параллельно с имеющимся в балластном преобразователе дросселем. Вследствие уменьшения суммарной индуктивности будет увеличена частота блока питания. Такое явление приведет к увеличению потерь в трансформаторе и перегреву транзисторов выходного выпрямителя.

Следует учитывать повышенную чувствительность диодов Шоттки к превышению значения обратных напряжения и тока. Попытка установить, скажем, 5-вольтовый диод в 12-вольтовую схему, скорее всего, приведет к выходу элемента из строя.

Не пытайтесь заменить транзисторы и диоды отечественными, например, КТ812А и КД213. Это однозначно приводит к ухудшению рабочих характеристик устройства.

Как подключать ИБП к шуруповерту

Электроинструмент необходимо разобрать, отвинтив все шурупы. Обычно корпус шуруповерта состоит из двух половинок. Далее следует найти провода, которыми двигатель подключается к батарее. Соединить эти провода с выходом ИБП можно с помощью пайки или термоусадочной трубки, вариант со скрутками нежелателен.

Для ввода провода от блока питания в корпусе инструмента необходимо выполнить отверстие. Важно предусмотреть меры, предотвращающие вырывание провода в случае неосторожных движений или случайных рывков. Самый простой вариант – обжать провод внутри корпуса у самого отверстия клипсой из сложенного пополам коротенького отрезка мягкой проволоки (подойдет алюминий). Имея превосходящие диаметр отверстия размеры, клипса не даст проводу оторваться и выпасть из корпуса в случае рывка.

Как видно, энергосберегающая лампочка, даже отработавшая положенный ей срок, может принести немалую пользу своему владельцу. Собранный на базе ее комплектующих ИБП может с успехом применяться в качестве источника энергии для аккумуляторного электроинструмента или зарядного устройства.

Видео

Данное видео расскажет Вам как собрать блок питания (бп)из энергосберегающих ламп.

Правильная намотка импульсного трансформатора

Из рисунка выше видно, что к двухтактным относят: мост, полумост и пуш-пул. В этих схемах зазора в сердечнике быть не должно, причем это касается не только силового трансформатора, но и ТГР.

Что касается однотактных схем, они бывают прямоходовые и обратноходовые, вот у них зазор в сердечнике должен быть обязательно, поэтому первым делом всегда необходимо более подробно ознакамливаться с тем, что вы делаете.

Для более наглядного примера в этой статье мы рассмотрим намотку 2-ух различных трансформаторов, один для двухтактной схемы, второй соответственно для однотактной.

Как видим из схемы — это полумост. Таким образом данный тип относится к разряду двухтактных схем, следовательно, как упоминалось в начале статьи — зазор в сердечнике не нужен.

С этим определились, но это еще не все. Перед намоткой необходимо произвести специальные вычисления (рассчитать трансформатор). Благо в интернете без особого труда можно найти и скачать специальные программы Владимира Денисенко для расчета трансформатора.

При включенной галочке программа автоматом накидывает пару витков на вторичку для зазора работы ШИМ.
Второе поле — это охлаждение. Если оно присутствует, то можно из трансформатора выжать больше мощности.

И последнее, но самое важное – необходимо указать какой сердечник будет использоваться при намотке данного трансформатора.



Стараемся равномерно укладывать витки, также необходимо избегать пересечение провода и различных узелков, петель и тому подобных явлений. От того как вы намотаете трансформатор зависит дальнейшая работа всего блока питания.

Мотаем ровно половину первички и делаем отвод, только не прямо на пин трансформатора, а вверх. Дальше будем мотать вторичку, а поверх неё оставшуюся первичку.

Припаиваемся к началу обмотки и равномерно виток к витку мотаем. При этом желательно чтобы вторичка поместилась в один слой. Но если же вы рассчитали на большее напряжение, то необходимо второй слой равномерно растянуть по всему каркасу.

Когда намотали слой, то опять же делаем отвод вверх и начинаем мотать вторую часть вторички. Мотается она точно так же, как и первая.

Вот тут уже стоит каким-либо образом пометить где у вас первая половина вторички и где вторая.

Следующий шаг – домотка первичной обмотки. В этом случае автор обычно оставляет себе пустой пин на печатной плате, чтобы туда можно было подключить среднюю точку первички.

Примечание для начинающих! Как правило начинающие радиолюбители делают свои первые блоки питания не стабилизированными на микросхемах типа IR2153 и постоянно сталкиваются со следующей проблемой: мол намотал на одно напряжение, а на выходе получил другое. Перемотка результатов не дает. В чем же дело? А дело в том, что необходимо проводить измерения при нагрузке как минимум 15% от номинала. А то получается, что выходной конденсатор зарядился до амплитудного значения, собственно его вы и измеряете, и не можете понять что не так.

Намотка трансформатора обратноходового блока питания ничем не отличается от предыдущего, только для расчета будем использовать уже другую программу из того же пакета программ – «Flyback – Программа расчета трансформатора обратноходового преобразователя» (Версия 8.1).


На этом все. Благодарю за внимание. До новых встреч!

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Импульсный трансформатор — виды, принцип работы, формулы для расчета

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) — важный элемент, устанавливаемый практически во всех современных блоках питания.

Различные модели импульсных трансформаторов

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

  • стержневом; Конструкция стержневого импульсного трансформатора
  • броневом; Конструкция импульсного трансформатора в броневом исполнении
  • тороидальном (не имеет катушек, провод наматывается на изолированный сердечник); Конструкция тороидального импульсного трансформатора
  • бронестержневом; Конструктивные особенности бронестержневого импульсного трансформатора

На рисунках обозначены:

  • A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В — катушка из изолирующего материала
  • С — провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Читать еще:  Как подключить розетку легранд для интернета

Принцип работы

Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

Схема: подключение импульсного трансформатора

Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax — Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

  • Ψ — параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке ИТ, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, — перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L — перепад индукции;
  • µа — магнитная проницаемость сердечника;
  • W1 — число витков первичной обмотки;
  • S — площадь сечения сердечника;
  • l — длинна (периметр) сердечника (магнитопровода)
  • Вr — величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm — Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности ИТ полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Видео: подробное описание принципа работы импульсного трансформатора

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным ИТ идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Расчет импульсного трансформатора

Рассмотрим, как необходимо производить расчет ИТ . Заметим, КПД устройства напрямую связано с точностью вычислений. В качестве примера возьмем схему обычного преобразователя, в которой используется ИТ тороидального вида.

Схема преобразователя

В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Рн.

Значение Рн отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Ргб), она должна быть не меньше мощности нагрузки:

Необходимые для вычисления параметры:

  • Sc – отображает площадь сечения тороидального сердечника;
  • S – площадь его окна (как наитии это и предыдущее значение показано на рисунке);

Основные параметры тороидального сердечника

  • Вмакс – максимальный пик индукции, она зависит от того, какая используется марка ферромагитного материала (справочная величина берется из источников, описывающих характеристики марок ферритов);
  • f – параметр, характеризующий частоту, с которой преобразуется напряжение.

Следующий этап сводится к определению количества витков в первичной обмотке Тр2:

(полученный результат округляется в большую сторону)

Величина UI определяется выражением:

UI=U/2-Uэ ( U – питающее преобразователь напряжение; Uэ— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).

Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:

Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.

Диаметр используемого в обмотке провода вычисляется по формуле:

Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:

Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.

Импульсный трансформатор

Импульсный трансформатор – трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Рассмотрим особенности конструктивного устройства этой техники, область применения, выпускаемые разновидности и другие характеристики, связанные с данным оборудованием.

Конструкция и принцип работы

Импульсный трансформатор, по аналогии с другими идентичными устройствами, состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • сердечника.

При подаче на входную катушку однополярных импульсов “е(t)” временной интервал между которыми довольно короткий, он вызывает возрастание индуктивности во время интервала t и , после чего наблюдается ее спад в интервале (Т-tи). Благодаря разнице в количестве витков на катушках входа и выхода и импульсному характеру подачи тока, получается добиться высокого коэффициента трансформации с сокращением габаритных размеров устройства.

Одновременно решаются задачи измерения уровня и полярности токового импульса или характеристик по напряжению, согласования значения сопротивления аппарата, создающего сигналы, с потребляющим оборудованием, создание схем обратной связи и пр.,

Подключение импульсного трансформатора

Область применения

По большей части указанные трансформаторы применяются в импульсных устройствах:

  • газовых лазерах;
  • триодных генераторах;
  • дифференцирующих модулях;
  • магнетотронах и др.

Виды трансформаторов

Эти приборы используются в современном радиоэлектронном оборудовании, для источников питания импульсного типа, телевизорах, компьютерах и другой технике.

Ещё одна область использования устройств – в качестве защитных элементов при коротком замыкании в условиях холостого хода, чрезмерной нагрузке или избыточном нагреве.

Разновидности

В зависимости от конструктивных особенностей различают следующие разновидности импульсных трансформаторов:

  • стержневые;
  • броневые;
  • тороидальные, с намоткой провода на изолированный сердечник, не предполагающие применения катушек;
  • бронестержневые.

Виды магнитопроводов

Поперечное сечение сердечника в большинстве устройств выполняется в форме круга или прямоугольника, по аналогии с силовыми аппаратами.

Основные характеристики устройств нанесены на корпус, поэтому из условного обозначения можно почерпнуть информацию об главных параметрах оборудования.

Стоимость трансформатора

Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.

Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.

Преимущества и недостатки

Использование импульсных трансформаторов объясняется следующими преимуществами:

  • высокими показателями выходной мощности;
  • небольшой массой и габаритными размерами;
  • высокой эффективностью, благодаря снижению энергетических потерь;
  • меньшей ценой при сопоставимых характеристиках;
  • высокой надёжностью по причине наличия схем защиты.

Разобранный импульсный трансформатор

Малая масса достигается посредством возрастания частоты импульса. Это приводит к уменьшению объёма конденсаторов и простоте схемы выпрямления.

Возрастание коэффициента полезного действия обеспечивается, благодаря сокращению энергетических потерь.

Уменьшение габаритов связано со снижением количества использованных материалов. Это основная причина удешевления данной продукции. Ещё одно достоинство малых размеров – возможность применения устройства в малогабаритных электротехнических изделиях.

Недостатки связаны со сложностью в ремонте по причине отсутствия в схеме гальванической развязки наличии помех высокой частоты, в связи с особенностями конструкции и принципа действия устройства.

Читать еще:  Как подключить сабвуфер схема

Чтобы предупредить влияние высокочастотных помех, нередко приходится прибегать к использованию специальных защитных средств, если применяется оборудование, для которого такие факторы нежелательны. В некоторых случаях, в связи с помехами, применение импульсных трансформаторов оказывается невозможным.

Порядок проверки исправности

Для проверки исправности импульсного трансформатора используется аналоговый или цифровой мультиметр. Цифровое устройство обладает преимуществами, благодаря удобству применения. Его не нужно дополнительно подстраивать, достаточно убедиться в наличии питания и целостности проводов подключения.

Аналоговый мультиметр настраивается следующим образом:

  • выбирается режим эксплуатации переключением в область минимальной величины сопротивления при измерении;
  • провода вставляются в контакты прибора и соприкасаются друг с другом;
  • специальной подстройкой стрелка выставляется на ноль;

Если совместить стрелку с нулём не получается, это говорит о проблемах с элементами питания, нуждающимися в замене.

Если трансформатор является составной частью некоторого аппарата, желательно отделить этот элемент от остальной конструкции, чтобы исключить воздействие сопутствующих помех при диагностике.

Проверка с помощью осцилографа:

Неисправность прибора может объясняться следующими проблемами:

  • повреждённым сердечником;
  • подгоревшими соединениями;
  • нарушением изоляции проводов, вызывающим короткое замыкание обмотки;
  • разрывом провода.

Кроме инструментальных измерений, необходимо обращать внимание на внешний вид аппарата. О неисправности может свидетельствовать подгоревшая обмотка, следы гари и соответствующий запах.

Процедура намотки

Если провод входной или выходной катушки не пригоден для дальнейшей эксплуатации, трансформатор можно перемотать. Для этого подбирается провод с двойной или тройной изоляцией, который необходимо намотать на сердечник.

Операция выполняется в следующем порядке:

  • наматывается провод первичной катушки, после предварительного припаивания входного контакта. Витки наматываются равномерно и плотно;
  • выходной конец провода припаивается в положенном месте;
  • наносится изоляция в несколько слоёв;
  • наматывается вторичная обмотка, с припаиванием входного и выходного концов.

Чтобы устройство работало нормально, провод наматывается равномерно, исключив узлы и перекручивания. Количество витков устанавливают, исходя из проведённого расчёта по характеристикам устройства.

Что такое импульсный трансформатор и как его рассчитать?

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:

  • Тороидальный.
  • Броневой.
  • Стержневой.
  • Бронестержневой.

Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector