26 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Содержание

Как подключить лампочку 12в к 220в

Схемы подключения точечных светильников на 12 В и 220 В

Используя декоративную отделку потолков и для более привлекательного вида, все больше используются точечные источники света. И по своему техническому исполнению они могут работать от стандартного напряжения в 220 Вольт и от безопасного в 12 Вольт. В этой статье мы рассмотрим принципиальные схемы подключения обоих вариантов и узнаем, в каких случаях применяется тот или иной вид точечного освещения.

Где используют 220 В, а где 12 В

Безопасное напряжение в 12 Вольт можно использовать абсолютно везде, вот только с экономической точки зрения это будет не совсем правильно. Так как в этом случае вам нужно будет приобретать дополнительно понижающий трансформатор 220 на 12 Вольт, а если у вас предполагается довольно большое количество осветительных элементов и предполагается разбивка на группы, то на каждую нужно будет устанавливать отдельный понижающий трансформатор.

Поэтому рекомендованы низковольтные светильники использовать в таких помещениях, как: ванная комната, или же смотровая яма в вашем гараже.

А вот светильники на 220 Вольт отлично подойдут для: спальни, прихожей, кухни т. д.

Схема подключения на 220 В

Итак, вы решили, например, сделать освещение в зале. И при этом у вас предполагается все лишь одна группа освещения. В таком случае схема параллельного подключения в трехпроводной сети будет выглядеть так:

Существуют два варианта параллельного подключения светильников, а именно:

1. Лучевой . Это когда на каждую лампу приходит отдельный проводник.

2. Шлейфом . В этом случае на первый осветительный прибор поступает фаза и ноль, от первого на второй уходит отдельный кусок кабеля и так по порядку. Это значит, что кроме последнего источника света на все остальные идут два куска кабеля.

Давайте изучим эти варианты более подробно.

Лучевое соединение

Данный способ параллельного соединения считается наиболее эффективным. По причине того, если у вас выходит из строя одна из ламп, то не горит именно она, а все остальные прекрасно работают.

К недостатку можно отнести более высокий расход кабеля, а так же необходимость соединения в одну точку сразу большого количества фазных проводов.

И если расход кабеля это по сути своей мелочи, то вот долговечное соединение — задача сложная, но решаемая. Для этого нам с вами достаточно воспользоваться клеммной колодкой или же специальным ваго-разъемом.

С помощью специализированного ваго-разъема это соединение выполнить очень просто. Главное приобрести модель для параллельного подключения и желательно с пастообразным наполнителем. Это, конечно, дорого, но надежно и просто.

Так же, конечно, можно выполнить скрутку этих проводов, но потом обязательно нужно выполнить сварку.

Соединение шлейфом

Шлейфное соединение в основном используют в таком варианте, когда светильников довольно большое количество и необходимо сэкономить провод.

Недостатком такого способа соединения является то, что при выходе из строя одной лампы не будет гореть весь «хвост» осветительных приборов, идущих после нее.

Но выявить вышедшую из строя лампочку проще простого: повреждена именно та, оная идет сразу же после нормально работающей.

Для двух групп освещения схема будет выглядеть так

Принципиальная схема подключения равноценно подходит для всех видов параллельного включения.

Схема подсоединения на 12 В

Итак, вам нужно выполнить подсоединение именно 12 вольтовых светильников. Для этого в обязательном порядке нужно купить понижающий трансформатор 220/12 В.

Его устанавливают после выключателя и как можно ближе к светильникам.

Мощность трансформатора выбирается на 25-30 % больше, чем суммарная мощность всех ламп в данной группе освещения. Например, у вас в общей сложности 6 точек, по 6 ватт каждая (в примере рассматриваются светодиодные лампы). Получаем, что суммарная нагрузка будет равняться 36 ваттам, к этому показателю добавляем 25% запаса и получаем, что нам необходимо приобрести транс минимальной мощности в 45 Вт.

При разбивке освещения на группы приобретаем отдельный трансформатор на каждую из них. Схема подключения с трансформаторами на две группы выглядит так

Недостатком этих схем является то, что если из строя выйдет трансформатор, то нерабочей останется вся группа. Идеальным выходом из этого является подключение на каждую лампу отдельного транса.

В таком случае схемы параллельно соединяются сами трансформаторы, а уже к выходным клеммам трансов сажаются лампы. Это самый затратный способ из всех возможных вариантов. Но при этом если при перегорании лампы не горит лишь она, все остальные будут в работе.

Сечение проводов

Так как мы рассматриваем случай питания по 12 Вольтам, то это значит, что ток будет довольно больших значений, что приведет к большему нагреву и потери в проводах . Поэтому при подключении светильников на 12 В обязательно нужно учитывать длину и сечение питающего провода идущего после транса.

Чтобы воспользоваться таблицей, нужно узнать ток. Для этого делим мощность на напряжение. Например, подключаем 6 ламп, каждая мощностью по 12 вольт. Получается: 5*12/12 = 5 Ампер.

Выбираем близлежащее большее значение в таблице и видим, что при таком токе мы можем использовать кабель в полтора квадрата на длину линии до 7,4 метра.

Данный расчет действителен для шлейфного соединения, если у вас лучевая разводка, то для каждой лампы расчет производится отдельно.

Это все, что я хотел вам рассказать о вариантах схем подключения светильников на 12 и 220 Вольт. Надеюсь, моя статья оказалась вам полезна. Спасибо за внимание.

Как запитать куллер 12в от розетки

Привет, Друзья! Сегодня хочу рассказать о том как запитать обычный компютерный куллер на 12 вольт от розетки 220 вольт.

В общем ситуация такая, сейчас весна и активно идет подготовка к дачному сезону. Рассаде которая растет у меня в квартире не хватает света. У меня есть фитосветодиодные матрицы которыми можно досветить рассаду. В светодиодную матрицу уже встроен драйвер, т.е. матрицу можно напрямую подключать к 220в.

Светодиодная матрица 50W

Проблема той светодиодной матрицы в том что она сильно греется и ей требуется радиатор для отвода тепла. И куллер тоже требуется. Короче, куллер захотелось запитать по типу как светодиодную матрицу, без трансформатора. В инете нашел схему бестрансформаторного БП.

Вот так выглядит схема

Перед диодным мостом стоит пленочный конденсатор, который гасит напряжение, как бы реактивное сопротивление. R1 резистор разряжает конденсатор при выключении. C2 сглаживает пульсации. D2 стабилитрон который стабилизирует напряжение до 12 вольт.

Вот такие детали, за кадром еще есть стабилитрон.

Подходящего номинала конденсатора не было, пришлось запаять нужную емкость из нескольких.

Схема в сборе, осталось только включить

Первое включение, схема работает.

Замеры показывают 10.8 вольт что нормально. Хотя возможно стоило убрать один конденсатор с самой маленькой емкостью, потому что куллер на 12в.

Схему убрал в вот такой корпус.

В целом конструкция выглядит вот так. На сборке стоит бестрансформаторный блок питания, только собраный ранее.

Теперь вид сверху

Я не ожидал что можно из нескольких радиодеталей собрать рабочий блок питания. В общем я доволен, но есть подозрение что схема не надежна. По этому в первый блок питания я добавил предохранитель, для того если что-то пойдет не так, то предохранитель сгорит и пожара дома не будет))). Еще был момент когда я решил испытать схему на прочность методом быстрого включения-выключения. Что в итоге привело к выходу из строя стабилитрона. Заменив на новый стабилитрон все заработало как следует.

Читать еще:  Как приделать зеркало к стене

У меня вопрос, как данную схему улучшить и что следует добавить в первую очередь не перегружая деталями. Кто знает напишите в комментариях.

Спасибо за внимание! До новых встреч)

Нормальная схема, если не трогать руками. Нет развязки от сети.

Если Вы не выходите из квартиры, то всё норм.

Кстати, стабилитроны имеют порой большой разброс и полученное напряжение может быть законным.

Но если Вы выходите из квартиры и оставляете свет включенным, то всё-таки лучше поискать и прикупить что-то промышленное.

Ну и оттачивать качество пайки и сборки))

Там он, как правило, довольно низкого качества и сгорает быстрее, чем сами светодиоды

Проще. Ну нет допустим у человека БП, а так собрал из мусора.

Какой же мусор, если требования к конденсаторам по вольтам строгие, а на «мусоре» информации о вольтах может и не быть.

. Вот у меня лежит новая китайская лампочка освещения с точно таким же «блоком питания», расчитанным на 110в, с 80шт светодиодами «2835», так я ссу переделывать на 220в заменой конденсатора. Думаю надёжнее, не поленится — посчитать сколько там светодиодов последовательно/парралельно, и поджечь их драйвером от нормальной LED-лампы.

Ссылка на фото+схема:

Блок питания на гасящем конденсаторе гуглишь и просвещаешься. Есть и онлайн калькуляторы.

Нечему там просвящаться! Они на фиксированные и Вольты и Амперы расчитаны! А и вентиляторы, светодиоды такой нагрузкой не являются! Конечно, стабилитрон может спасти ситуацию, но я не в курсе какие нагрузки способен выдерживать современный стабилитрон (а те, что были 30 лет назад под это дело точно не подойдут).

Почему? Вентилятор понятно, а светодиод более-менее стабильная нагрузка. КС-ы (стабилитроны) тех времён вполне подходили. Они поболее одного ватта тащили. Другое дело- работа на обратной ветви характеристики- надо ток ограничивать. Поэтому стабилитрон и вылетел у чувака- надо резистор последовательно вкорячить.

При нагреве у светодиода растёт ток. А если их 20 шт в цепочке, то очень сильно растёт. Поэтому у светодиодов всегда ставят стабилизатор тока, а не шайтан машину, у которой даже напряжение невозможно стабилизировать!

Согласен. Но после нагрева то ток стабилен.

А стабилитрон тут вообще ни к месту- нужен действительно источник тока.

А тут дядька питает вентилятор. Нафига там вообще стабилитрон, который ещё и сажает напряжение. И схема включения оного безграмотна.

стабилитрон нужен для защиты электролитов от обрыва вентилятора

Хм. Диод не проще- нагрузка индуктивная. Диод в обратку- стандартная защита.

Кулеры эти не видел ни разу что бы как то защищали от обратной ЭДС, там внутри активная схема и по умолчанию должна сама разбираться. (см.схему)

При обрыве нагрузки (вентилятора) в этой схеме напряжение на электролитах будет неконтролируемо повышаться до

С учётом кастомного:)) монтажа — это вполне реально.

Хм. Точно. Что-то тупанул. Прошу прощения.

Ты немного не правильно представляешь то, как работает стабилитрон. Это не просто штука которая делает пиздато. Что делает стабилитрон? Он резко уменьшает своё сопротивление в случае если к нему приложено напряжение больше номинального. Грубо говоря он уменьшает своё сопротивление до тех пор пока пока напряжение на его выводах не станет номинальным.

А теперь представим себе ситуацию у тебя стабилитрон подключен к идеальному источнику бесконечной мощности (а розетка способная выдать несколько кВт вообще не напрягаясь, для стабилитрона способного рассеять в лучшем случае доли Ватта, это практически идеальный источник). Стабилитрон будет пытаться пересилить этот источник и падет смертью храбрых. Поэтому ВСЕГДА перед стабилитроном нужно ставить что-то что будет ограничивать ток через стабилитрон. В твоей схеме эту роль выполняют балластные конденсаторы.

Но прежде чем радоваться подумай вот над чем. Напряжение на выходе твоего ИП зависит от нагрузки. Пока есть вентилятор напряжение на выходе просаживается до 10 с копейками вольт, стабилитрон закрыт, всё хорошо. Однако отключи нагрузку и напряжение на сглаживающем конденсаторе будет стремиться к 311 вольтам. Естественно стабилитрон откроется и будет пытаться пропустить через себя весь тот ток, который сейчас идет через вентилятор. Рабочий ток вентилятора порядка 100мА, а теперь посмотри на характеристики своего стабилитрона и подумай, а сдюжит ли он такую мощность? Обычно стабилитроны в большой ток не могут.

Так и представлял себе стабилитрон: «штука которая делает пиздато» — эдакий черный ящик.
«Он резко уменьшает своё сопротивление в случае если к нему приложено напряжение больше номинального. Грубо говоря он уменьшает своё сопротивление до тех пор пока пока напряжение на его выводах не станет номинальным.»

Я понял так: с момента после диодного моста ток уже постоянный, напруга пусть будет 100вольт. И напруга встречает на своем пути стабилитрон, который в свою очередь встречая 100вольт открывается уменьшая сопротивление и гасит напругу до 12 вольт а ниже не пропускает потому что закрывается.

А про резистор я согласен поставлю обязательно.

Так я думаю будет понятнее. Простая схема источник, резистор, стабилитрон и резистор нагрузки. Синее это источник, зеленое, это точка между резистором и стабилитроном, оранжевое это стабилитрон.

При напряжении стабилизации, стабилитрон начинает открываться и вместе с резистором получается делитель напряжения. Из этого следует сразу несколько нюансов:

1) Напрямую к источнику стабилитрон подключать нельзя. Нужно обязательно ограничивать ток. Без резистора стабилитрон будет пытаться пропустить через себя ток, стремящийся к бесконечности.

2) Тот же самый резистор, который ограничивает ток стабилитрона, ограничивает ток нагрузки. На графике видно, что зеленая линия всегда ниже входа, даже когда стабилитрон закрыт.

3) Резистор стабилитрона и резистор нагрузки в свою очередь так же образуют делитель напряжения. Поэтому для мощной нагрузки нужно ставить маленький резистор стабилитрона, но в тоже время тебе нужно будет ставить мощный стабилитрон под этот резистор. И по хорошему всё это надо считать.

Поэтому на мой взгляд стабилитрон далеко не самое лучшее решение для стабилизации напряжения на мощной нагрузке. Я бы на твоем месте посмотрел бы в сторону L7812. Это линейный стабилизатор. КПД у него конечно ниже плинтуса (хотя по сравнению со стабилитроном теже яйца только в профиль), но с другой стороны тебе то и нужно всего один вентилятор питать.

Как собрать контрольную лампу на 12 и 220 В?

Несмотря на огромное количество измерительных приборов и индикаторов, используемых как в бытовых, так и в производственных задачах, из обихода не перестают выбывать контрольные лампы. Такое устройство можно без проблем и капитальных затрат собрать самостоятельно. Наиболее распространенные модели предназначены для использования в бытовых и автомобильных цепях. Поэтому в данной статье мы разберем, как собрать контрольку на 12 и 220 Вольт своими руками.

Для домашней сети

Отличительной особенностью бытовой сети и подключаемых к ней приборов является питающее напряжение на 220В. Поэтому все запчасти для контрольки должны выбираться исходя из этой величины.

Из запчастей вам понадобятся:

  • два провода – если контролька вам нужна для одноразового использования, можно использовать и алюминиевые провода. Если вы планируете применять ее неоднократно, лучше брать медный многожильный провод, так как он не боится перегибов и более удобен в эксплуатации.
  • патрон под лампочку – выбирайте только закрытые модели из изоляционного материала, никаких оголенных токоведущих элементов, к которым был бы открыт доступ, быть не должно.
  • контрольная лампочка – выбирается в соответствии с размером цоколя патрона, а при наличии защитного кожуха и по габаритам колпака.
  • щупы – не являются обязательным элементом контрольной лампы, но значительно упрощают работу, а при наличии упоров еще и повышают безопасность. В качестве щупа можно устанавливать не только заводские изделия, но и любые подручные средства – болты с накрученными гайками, спицы и т.д.
  • колпак или защитный кожух – также не является обязательным элементом, но снижает вероятность повреждения особо хрупких деталей. По конструкции бывает сплошной или решетчатый.

Последние два пункта актуальны для контрольки многоразового использования, если вы хотите прозвонить цепи электропроводки один раз, можно собрать тестер без щупов и кожуха.

Изготовление контрольки на 220В

Чтобы собрать контрольку, вам потребуются такие инструменты: отвертка, паяльник, кусачки или пассатижи. В зависимости от ситуации, вам может понадобиться только часть этих приспособлений. К примеру, если пайка не предвидится, можно обойтись и без паяльника. Следует отметить, что провода к патрону можно припаивать, а не прикручивать, так получиться надежней.

Процесс изготовления состоит из таких этапов:

  1. Разберите патрон на составляющие элементы, чтобы получить доступ к точкам подключения;
  2. Подключите провода к выводам патрона, для этого заведите их в клеммный зажим и плотно зажмите отверткой, а если такое соединение не предоставляется возможным, припаяйте провода к выводам;
  3. Соберите патрон, провода контрольки выведете в специально предназначенное для этого отверстие;
  4. Подключите или припаяйте щупы к выводам проводов, места подключения или пайки заизолируйте, сами щупы должны иметь достаточную изоляцию, чтобы в ходе работы исключалась возможность прикосновения к оголенным токоведущим деталям;
  5. Вкрутите лампу в патрон, при необходимости, закройте ее защитным кожухом.
Читать еще:  Как повесить тюль на прищепки

Рис. 1: Готовая контролька на 220В

Контролька на 220 В готова к использованию для прозвонки проводов и электрических цепей. При постоянной работе такой контролькой не забывайте периодически проверять ее работоспособность в заведомо исправной сети, находящейся под напряжением.

Для автомобиля

Автомобильная контролька, в отличи от бытовой, выполняет измерительные операции в цепях постоянного тока с питающим напряжением 12 В. Поэтому вы не сможете использовать контрольку на 220 В в качестве автомобильного пробника. Но принцип изготовления будет идентичным, хотя для диагностики автомобиля вместо лампочек очень удобно использовать светодиодные контрольки.

В виду технических особенностей электропроводки автомобиля, контролька на 12 В, выполненная по принципу описанному выше, не предоставляет полной информации о положении дел в цепи. Из-за чего контролька автоэлектрика может оснащаться такими функциональными дополнениями:

Рис. 2: модернизированная автоконтролька

Такая схема, помимо контроля состояния цепей, позволяет определить плюс или минус на выводах и интенсивность сигнала. Благодаря разнополярному включению светодиодов, один из них загорится при касании к положительному контакту, а второй будет сигнализировать при контакте с минусовой клеммой.

Для реализации такой автотестконтрольки вам понадобятся:

  • Соединительные провода – подбираются в соответствии с вашими потребностями, но профессиональные автоэлектрики рекомендуют делать длину не менее 2м, так как устанавливать щуп приходится и в труднодоступных местах;
  • Щупы могут представлять собой штекеры или крокодилы, для одноразового использования можно просто зачистить края проводов от изоляции и обойтись без щупов;
  • Патрон под лампочку и сама лампочка на 12В, если прибор освещения имеет другой принцип подключения, устанавливается патрон соответствующего типа или провода припаиваются к выводам лампы (светодиода) ;
  • Кнопка – предназначена для коммутации в цепи контроля, выбирается по величине коммутируемого тока;
  • Два светодиода – в данном примере используются разноцветные модели (красный для сигнализации плюсовой клеммы и синий для минусовой);
  • Корпус – предназначен для размещения всех деталей и установки световых сигнализаторов на видном месте, в качестве корпуса можно использовать маркер, фломастер или пластиковый тюбик из-под клея.

Выбор вспомогательных элементов ограничивается только вашей фантазией и подручными средствами, которые вы найдете в своем гараже, квартире или мастерской. Если вы изготавливаете автомобильный тестер для конкретной цели, вы можете исключить определенные элементы из схемы, чем значительно упростите устройство. Так, наиболее простой контролькой считается модель с одной лампочкой или низковольтным светодиодом.

Простейшая контролька на 12В для индикации цепи

Для изготовления такого устройства вам понадобиться одноразовый шприц, лампочка на 12 В (можете заменить ее светодиодом), провод, канцелярская резинка, канцелярский нож, пассатижи.

Процесс изготовления состоит из таких этапов:

  • разберите иглу от шприца и проденьте ее в пластиковое основание таким образом, чтобы одни конец полностью погружался внутрь шприца – он должен выполнять роль контакта для лампочки. Рис. 3: положение иглы в пластиковом основании
  • отмерьте такую длину провода, чтобы вам было удобно обмотать его вокруг цоколя. Зачистьте этот участок от изоляции, обмотайте вокруг лампы и затяните при помощи пассатижей. Эту процедуру можно заменить пайкой для обеспечения более надежного контакта.
  • если цоколь лампы свободно ходит внутри шприца, наденьте сверху на него канцелярскую резинку для уплотнения. Вставьте лампу таким образом, чтобы незадействованный контакт соприкоснулся с иглой. Рис. 4: вставьте лампочку в шприц
  • поршень от шприца обрежьте так, чтобы он закрывал лампу вровень с корпусом. Проделайте в поршне отверстие для провода, иначе изготовление может сильно затрудниться.

Рис. 5: готовая контролька из шприца

Контролька готова, можете использовать ее для отыскания цепи в автомобильной проводке или проверять исправность отдельных элементов.

Контролька для определения полярности

Это более сложный вариант, для такой контрольки вам понадобятся два светодиода, можно использовать светодиоды smart (возьмите разные цвета для удобства), корпус (в данном случае используется нерабочая индикаторная отвертка), паяльник, резистор на 1000 Ом. Процесс изготовления контрольки состоит из таких этапов:

  • спаяйте светодиоды и резистор, как показано на рисунке; Рис. 6: схема подключения светодиодов
  • зафиксируйте конструкцию на контактных пружинках (отлично подойдут те, на которых держалась лампочка в отвертке); Рис. 7: зафиксируйте светодиоды на пружинах
  • установите модернизированную световую сигнализацию назад в индикаторную отвертку. Рис. 8: готовая контролька в индикаторе

Тестер готов, теперь при касании плюсового контакта у вас будет гореть один светодиод, а при касании к минусовому – второй. Но помните, рабочий номинал такой контрольки не подходит для бытовых сетей 220В – он определяется рабочим номиналом световых элементов.

Схема подключения точечных светильников 220в и 12в

Схемы подключения точечных светильников

В декоративном освещении гипсокартонных потолков использует два варианта подключения светильников — это схема подключения точечных светильников 220 в и схема подключения точечных светильников 12 в. Эти схемы имеют свои преимущества и недостатки. Монтаж точечных светильников на 220 в делается через подключение светильников к распределительной коробке и обычных выключателей.

Подключение точечных светильников

Группа ламп может подключаться через одноклавишный выключатель, а при большом количестве точечных светильников подключение ламп может быть через 2-3-х клавишные выключатели. Преимуществом подключения ламп на 220 в является то, что не нужно выбирать сечение кабеля, возможность устанавливать неограниченное количество ламп и в любом порядке.

Однако напряжения 220 в считается опасным для жизни, поэтому установка точечных светильников должна проводиться квалифицированными электриками. Срок службы ламп на 220 в короткий, что обусловлено тонкой нитью накала.

Схема подключения точечных светильников 12в

Схема подключения точечных светильников 12 в лишена этих недостатков, но имеет другие. Срок службы таких ламп выше, так как они имеют более толстую нить накала. Установка 12-вольтовых светильников делается через понижающий трансформатор на 12 в, что безопасно.

Схема подключения группы точечных светильников через трансформатор 12 В

Однако здесь нужно предусматривать выбор сечения кабеля по току, для группы ламп. Галогенные точечные лампы на 12 в имеют большой потребляемый ток, они сильно нагреваются. Поэтому при монтаже точечных светильников 12 в нужно учитывать их высокую температуру и использовать термостойкие прокладки.

Для этих светильников применяют обычные понижающие трансформаторы на 12 в или электронные, которые имеют небольшой вес и такие виды защиты, как защита от короткого замыкания, стабилизацию выходного напряжения и плавный пуск, что значительно увеличивает срок их эксплуатации.

Схема подключения 3-х групп точечных светильников через отдельные трансформаторы 12 В

Мощность трансформатора выбирается по суммарной мощности группы светильников, с запасом. Так как галогенные точечные светильники потребляют значительный ток, длина проводников для лампы выбирается минимальной. В идеальном варианте устанавливается один трансформатор для одной лампы.

При отказе одного трансформатора остальные светильники работают. Если длина проводников превышает норму, кабель выбирается с большим сечением. Недостатком точечных ламп на 12 в является расчет сечения и длины кабеля, высокая температура ламп и установка трансформаторов.

Светодиодные лампы для точечных светильников 220 в

При установке светильников для натяжных и гипсокартонных потолков используют люминесцентные точечные светильники, галогенные или светодиодные. Особой популярностью пользуются светодиодные лампы для точечных светильников 220 в с направленным освещением.

Они экономичны, компактны, имеют низкое тепловыделение, что важно для натяжных потолков. Светодиодные лампы не мерцают, так как работают на постоянном напряжении. Такие светильники устанавливают в виде основного, дополнительного и декоративного освещения.

Схема подключения точечных светильников 220 В через одноклавишный выключатель

Перед установкой освещения на гипсокартонном потолке нужно нарисовать эскиз освещения на бумаге, определить группы светильников (основных и дополнительных) и выключателей. При составлении эскиза освещения нужно проследить, чтобы область установки точечных светильников не попала на перфорированный каркас гипсокартонного потолка, и была не ближе 2-3 см от него.

Схема подключения точечных светильников через двухклавишный выключатель

Это расстояние требуется для установки защелки светильника. Получить ровные отверстия можно с помощью соответствующей коронки и дрели. Когда отверстия для точечных светильников вырезаны, делают финишную отделку потолка и стен. Электропроводку удобнее прокладывать еще при сборке каркасного потолка. Для монтажа светодиодных точечных светильников хорошо подходит кабель ВВГнг сечением 1,5 мм ².

Процесс установки светильников не сложен. Усики светильника прижимаются и конструкция вставляется в отверстие гипсокартонного потолка. За отверстием усики разжимаются и крепко удерживают светильник. Место соединения цоколя лампы и кабеля нужно пропаивать и изолировать. Лампу крепят в корпусе специальной защелкой.

Изучаем устройство светодиодных ламп на 220В

Уже на протяжении многих лет мы применяли обычные лампы накаливания для освещения дома, квартиры, офиса или промышленного предприятия. Однако с каждым днем цены на электроэнергию стремительно растут, что заставляет нас отдавать предпочтение более энергоэффективным устройствам, обладающим высоким КПД, длительным сроком службы и способными создавать необходимый световой поток с минимальными затратами. Именно к таким устройствам относятся светодиодные лампы на 220 вольт, преимущества которых мы постараемся раскрыть в полном объеме в данной статье.

Читать еще:  Как правильно собрать каркас под гипсокартон

Внимание! В этой публикации приводятся примеры схем, с питанием от опасного для жизни напряжения 220В. Собирать и испытывать такие схемы разрешается только лицам, имеющим необходимое образование и допуски!

Самая простая схема

Светодиодная лампа на 220 В — это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.

Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.

Принцип работы

При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.

После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.

Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 — для ограничения тока, подаваемого на светодиодный мост при включении.

Схема с дополнительной защитой

Также в некоторых схемах есть дополнительное сопротивление R3, расположенное последовательно светодиодам. Оно служит для защиты от бросков тока в цепях светодиодов. Цепочка R3—C2 представляет классический фильтр низкой частоты (НЧ).

Схема с активным ограничителем тока

В этом варианте схемы ограничивающим ток элементом является сопротивление R1. Такая схема будет иметь показатель коэффициента мощности или cos φ близкий к единице, в отличие от предыдущих вариантов с токоограничивающим конденсатором, представляющих из себя реактивную нагрузку. Недостаток такого варианта в необходимости рассеивать значительное количество тепла на резисторе R1.

Для разрядки остаточного напряжения конденсатора C1 до нуля в схеме применен резистор R2.

Устройство светодиодных ламп для цепей переменного тока напряжением 220В

Светодиодные лампочки состоят из следующих компонентов:

  1. Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
  2. Диэлектрической прокладки между цоколем и корпусом;
  3. Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
  4. Радиатора, который служит для отвода тепла от светодиодов;
  5. Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
  6. Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
  7. Светорассеивателя для создания равномерного светового потока.

Как подключить светодиодные лампы на 220 вольт

Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ). Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль. В таком случае, фазное напряжение никогда не будет сниматься с цоколя.

Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.

Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе — к «минусу» блока питания.

В данном случае, важно соблюдать полярность («плюс» — к «плюсу», «минус» — к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя.

Внимание! Не перепутайте блок питания (источник питания) постоянного напряжения с трансформатором. Трансформатор дает на выходе переменное напряжение, в то время как источник питания — постоянное напряжение.

Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.

Внимание! В этом случае необходимо заменить используемый ранее трансформатор на источник постоянного напряжения 12 В мощностью не менее 16–20 Вт.

Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.

Как сделать простую светодиодную лампочку

Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,и пустая алюминиевая 330 мл банка

Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.

Итак, теперь само изготовление:

  1. Обмотайте лентой банку, как показано на рисунке.
  2. Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
  3. Вход ИП проводами припаяйте к цоколю основания лампы.
  4. Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
  5. Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.

Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!

Основные неисправности светодиодных ламп на 220 вольт

Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:

1. Выход из строя светодиодов

Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.

Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять — так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.

Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.

Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:

Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.

2. Выход из строя диодного моста

В большинству случаев при таковой неисправности основная причина — заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.

Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.

Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.

3. Плохая пайка выводных концов

В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.

Заключение

Светодиодная лампа 220 в — это энергоэффективное устройство, обладающее хорошими техническими характеристиками, простой конструкцией и легкой эксплуатацией, что позволяет их использования как в домашних, так и промышленных условиях.

Также стоит отметить, чтоб при наличии некоторых приспособлений, образования и опыта можно определить неисправности светодиодных ламп на 220 вольт и с минимальными затратами устранить их.

Видео по теме

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector